GBCS Scheme 🦪

USN						15AE46

Fourth Semester B.E. Degree Examination, June/July 2018 Turbomachines

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- 1 Define turbomachine. Explain the detailed classification of turbomachines with examples for (06 Marks)
 - b. Compare positive displacement machines with turbomachines in detail. (04 Marks)
 - Show that the discharge of a centrifugal pump is given by, $Q = ND^3\phi \left\{ \frac{gH}{N^2D^2}, \frac{\mu}{ND^2\rho} \right\}$ where Note the speed of the pump in rpm, D is the diameter of the impeller, g the acceleration due to gravity, H the manometric head, µ viscosity of fluid and p the density of the fluid.

OR

- A centrifugal pump running at 1500 rpm, with impeller diameter 200 mm, discharges 0.12 m³/s of water working against a head of 40 m with an efficiency of 90% (i) Calculate the specific speed (ii) the performance / power of a similar pump twice its size keeping the speed constant. ે(05 Marks)
 - From the preliminary principles derive Euler's energy equation in the alternate form. And the different energy terms in it.
 - For a given centrifugal pump with discharge angles (β_2) as 90°, less than 90°, more than 90°, draw the H-Q diagram with usual notations.

Module-2

- 3 Prove that for a compression process, the stage efficiency is greater than the overall isentropic efficiency.
 - b. An air compressor has six stages of equal pressure ratio 14. The mass flow rate is 45 kg/s. The overall isentropic compression efficiency is 84% Entry pressure is 1 and $T_1 = 40^{\circ}$ C. Calculate
 - (i) The state of the air at the exit.
 - (ii) Polytropic efficiency.
 - (iii) Stage efficiency.
 - (iv) Power required to drive the compressor, if the overall efficiency of the drive is 0.9

Assume $\gamma = 1.4$. R = 287 KJ/kgK, $C_{\rm B} = 1.005$ KJ/kgK

(10 Marks)

- Derive the relation between isentropic efficiency and polytropic efficiency for an expansion process with usual notations.
 - b. A two stage gas turbing develops 22 MW at the shaft. The inlet temperature is 1500 K. The pressure ratio of each stage is same, and the P₂/P₁ equal to 8. Take the isentropic expansion efficiency is 0.9. Calculate
 - The pressure ratio of each stage, if it has 2-stages. (i)
 - Polytropic efficiency. (ii)
 - (iii) The mass flow rate.
 - (iy) The efficiency and power of each stage, assume $\gamma = 1.4$, $C_P = 1.005$ KJ/kgK, overall drive efficiency = 0.90 (10 Marks)

Module-3

With the help of a neat sketch, explain the working principle and components of a 5 centrifugal compressor. b. Briefly explain the following for a centrifugal compressor, Slip factor. Pressure co-efficient. (ii) (i) (10 Marks) Surging Power factor. (iii)

OR

- With the help of diagrams and graphs describe the working of an axial flow compressors. (05 Marks)
 - For an axial flow compressor, draw velocity triangles at inlet and at exit for the following values of R (degree of reaction)

(i) R = 50%

(ii) R > 50%

(iii) R < 50%

(08 Marks)

- c. Explain / Define the following:
 - Work done factor (ψ) (i)
 - Flow co-efficient (b) (ii)
 - Pressure co-efficient (\$\psi_P) (iii)

(03 Marks)

Module-4

- How do you differentiate between an impulse and a reaction turbine? With neat sketches explain the working of an impulse and a reaction stage.
 - What do you understand by velocity compounding and pressure compounding in a turbine? (04 Marks)
 - Explain the following briefly,
 - Loading co-efficient (ψ) Vs Flow co-efficient (\$\phi\$) graph.

(03 Marks)

OR

- Draw Enthalpy-Entropy diagram for a radial turbine and explain the same. (06 Marks)
 - Describe the various stage losses occurring in a radial turbines. (06 Marks)
 - Draw and explain Blade-to-gas speed ratio (σ) (Vs) Stage efficiency (η_s) graph for a radial (04 Marks) turbine.

Module-5

- With the help of a neat sketch, explain the parts, and working principle of a centrifugal 9 (06 Marks)
 - Briefly explain the following for a centrifugal pump:
 - Manometric head. (i)
 - Suction head and Delivery head. (ii)
 - Manometric efficiency (nmano). (iii)
 - Mechanical efficiency (n_{mech}) (iv)
 - Hydraulic efficiency (ηH) (v)
 - Volumetric efficiency (nvol) (vi)
 - Overall efficiency (η_0) (vii)

(10 Marks)

OR

Briefly discuss the classification of hydraulic turbines.

(04 Marks)

- Elaborate the working principle of the following with figures:
 - Pelton wheel.
 - Kaplan turbine. (ii)

(09 Marks)

c. Briefly explain what is a draft tube, and what are it's functions.

(03 Marks)